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There is a strong case for arguing that the application of relational thinking to solve number 
sentences embodies features of mathematical thinking that are centrally important. This 
paper looks at the design and implementation of a questionnaire used in three countries to 
examine students’ capacity to use relational thinking to solve different types of number 
sentences. Some students appeared to rely solely on computational method to solve number 
sentences with one missing number whereas other students were able to demonstrate clear 
use of relational strategies. Did those who used computational approaches do so out of 
preference, because they were good at computation, or did they do so because computation 
was the only strategy they could use? The questionnaire needed to discriminate between 
these two groups and to design specific questions that required students to think relationally.  

A Design Issue 
How do we probe more deeply into connections between structural thinking in 

arithmetic, on the one hand, and mathematical structure, on the other, to learn more about 
shifts from particular to structural understandings? The importance of structural 
understandings in these contexts is that they offer students a source of control which allows 
them to move beyond the particular situation. In designing a research instrument we need 
to capture the extent to which this control is open to growth – that is, it is open to 
increasing levels of generality. 
 

Perceptions of Structure and Number Sentences 
Carpenter and Franke (2001), Stephens (2006), Jacobs, Franke, Carpenter, Levi and 

Battey (2007), Molina (2007), and Fujii and Stephens (2001, 2008) have studied in detail 
ways in which children as young as 6-years-old respond when asked to justify their 
decision about the validity of statements such as 173 – 35 + 35 = 173. 

Some children calculate their way to the answer and then decide; some start to 
calculate and then notice the familiar number to be subtracted and declare their decision; 
others look at the expression and declare immediately without apparently doing any 
calculation at all. To decide without any calculation is a form of relational thinking, of 
appreciating arithmetic structure concerning, if not zero, then the effect of first subtracting 
and then adding the same quantity. It could be the manifestation of a fundamental 
awareness that taking and then replacing makes no change (Lakoff & Nunez, 2000). As 
such it would be an example of a theorem-in-action (Vergnaud, 1983).  

Several authors, including Carpenter and Franke (2001) and Stephens (2006), refer to 
the thinking underpinning this kind of thinking as relational thinking, but it might just as 
easily be called structural thinking. Structural thinking is in this sense productive – 
pointing to the fact that the products of structural thinking can extend from being able to 
give several other instances of the same property to giving fully developed generalisations. 
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However students’ appreciation of the relation implicit in 173 – 35 + 35 = 173 may go 
beyond its use in this context; they may be aware that they are using a generality – indeed, 
they may be able to state that they are using an abstract relation. When learners are 
justifying their decisions to each other, it is often very difficult to decide whether they are 
aware of a general property (the 173 and the 35 are instances of generality) or whether the 
173 is mentally fixed but the 35 is an instantiation of taking and replacing, or an 
instantiation of 173 – a + a = 173, or even of b – a + a = b, that is, whether the 173 and the 
35 are seen as mere place holders or as quasi-variables (Fujii & Stephens, 2001; Lins & 
Kaput, 2004; Fujii & Stephens, 2008) or as mentally fixed for the time being.  

Some children can enact one or other of these relationships without being able to bring 
it to explicit articulation, and may not even use it robustly in all instances. Young children 
can sometimes articulate the general structural principles underlying the relationship, for 
example as “if you start with a number and you take away something and give it back you 
haven’t changed the starting number”. Children may be fuzzily aware that this relationship 
holds for all a and b with which they are familiar, or even able to express it as a generality, 
yet they may not have encountered or considered situations where a > b or where a and b 
are negative or rational. Thus general statements may adequately express limited structural 
understanding, based on restricted ranges of change. 

One way to think about the different possibilities, and even to seek evidence for 
different awarenesses, is through the focus and structure of their attention. The way they 
describe what they are doing sometimes suggests not only what they are attending to, but 
different ways in which they are attending, whether to the particular, or through the 
particular to the general, or at the particular though the general. Another way of expressing 
the complexity of learner awareness is that, without further probes, it is difficult to know 
the range-of-permissible-change of which the learner is aware, and even which 
dimensions-of-possible-variation the learner is contemplating. By asking learners to 
construct similar examples, some light is shed on at least some of the features they 
appreciate as changeable as well as the range over which the learner accepts that the 
change can be made (Watson & Mason, 2005). 

Structural awareness, or relational thinking in this context, therefore, involves explicit 
awareness of some range-of-permissible-change of some dimensions-of-possible-variation. 
These ranges-of-permissible-change can be extended when other kinds of numbers and 
number-like objects are encountered. 

Designing and using Missing Number Sentences 
Research carried out by Stephens (2008), Stephens and Wang (2008), and Stephens, 

Wang and Al-Murani (2008) used three types of mathematical sentences to explore 
students’ capacity to think about important aspects of mathematical structure. Type I 
number sentences used one missing number, Type II number sentences used two missing 
numbers and Type III sentences were modelled on Type II using algebraic symbols. In the 
three studies reported above, these three types of questions were used with 275 students in 
Australia, China and England ranging from Year 6 (10-11 years old) to Year 9 (13-14 
years old). Since then the same questions have been used successfully with children of 
similar ages – from upper primary and junior secondary classes – in Indonesia, Brazil and 
Japan.    
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Type I: one missing number 
 The first kind of number sentence (Type I) presents students with a number sentence 

with one number missing and asks them to find the value of the missing number and to 
explain briefly the reasoning they used to reach a solution. The authors named above used 
all four operations in Type I, and invited students to find the value of a missing number 
and to explain their thinking. For each operation, four different problems similar to those 
above were used but with the unknown number being set in a different place for each of 
the four problems. The suite of Type I questions used for addition is shown in Appendix 1. 
The following four Type I questions illustrate each of the four operations: 
 

c + 17 = 15 + 24 
99 – c = 90 – 59 
48 × 2.5 = c × 10 

3 ÷ 4 = 15 ÷ c 
 

Some students relied on computation to solve these problems. In each case, they first 
computed the result of the operation involving the two known numbers, and then used this 
result to calculate the value of the missing number on the other side of the equal sign. 
Other students used compensation and equivalence. Irwin and Britt (2005) claim that the 
methods of compensating and equivalence that some students use in solving these number 
sentences may provide evidence of “what could usefully be described as structural 
thinking” (p. 169). They give, as an example, the expression 47 + 25 which can be 
transformed into an equivalent expression 50 + 22 by adding 3 to 47 and subtracting 3 
from 25, thus making calculation easier. They also claim that “when students apply this 
strategy to sensibly solve different numerical problems they disclose an understanding of 
the relationships of the numbers involved. They show, without recourse to literal symbols, 
that the strategy is generalisable” (Irwin & Britt, 2005, p. 171). 

It is however not always so easy to deduce from observed behaviour whether learners 
are aware of the 47 and 25 as dimensions-of-possible variation, of 3 as a dimension-of-
possible-variation, or of the adding and subtracting as a special instance of more general 
compensation (another dimension-of-possible-variation). Structural thinking is much more 
than seeing a pattern, such as ‘when one number increases by three the other goes down by 
three’. 

Where this merely recounts the pattern used in this particular problem with no sense of 
generalisation to other instances, it indicates recognition of a relationship in particular but 
not perception of property in general. A capacity to generate other instances that illustrate 
the same property is a feature of structural thinking. Often it seems that students act as if 
they have some such awareness, but it may be neither robust nor universal. Furthermore, 
their perceived range-of-permissible change may be confined to positive whole numbers 
rather than to numbers more generally, whether involving negatives, rationals or decimals. 
A great deal depends on whether they are attending to and dwelling in the particular or in 
some sense aware of a property being instantiated, whether that in-dwelling comes from an 
awareness as a basis for their action in the form of a theorem-in-action, or from an 
emerging behavioural practice. 

Where learners respond to direct suggestions to ‘use compensation’ or to ‘add and 
subtract’, or to indirect prompts to use a strategy before trying to do it directly, they are on 
the way to being influenced by careful scaffolding and fading (Seeley Brown, Collins & 
Duguid, 1989; Love & Mason, 1992) so as to be able to initiate these actions for 
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themselves (van der Veer & Valsiner, 1991). Some where along the line, they display 
structural awareness. A deep understanding of equivalence and compensation is at the 
heart of structural thinking in arithmetic. Students need to know the direction in which 
compensation has to be carried out in order to maintain equivalence (Kieran, 1981; Irwin 
& Britt, 2005). Indeed, it may be argued that structural thinking is present only when 
students’ explanations show that they understand the fundamental importance of the 
operations involved, make use of equivalence, the direction of compensation required to 
maintain equivalence, and how particular results are part of a more general pattern. 

According to Stephens (2008), students used a range of equally successful explanatory 
methods in their written responses to Type I sentences. Some students used arrows or 
brackets or other notation in ways which indicate a comprehensive understanding of 
equivalence and compensation. The use of arrows or directed lines to connecting related 
numbers, such as from 2.5 to 10, showing ×4 above the line or arrow, and an arrow 
connecting 48 to the unknown number, with ÷4 joined to this line or arrow, was a simple 
and effective method of demonstrating the direction of compensation. Other students wrote 
their thinking in the form of mini-arguments (see Vergnaud, 1983) using expressions such 
as “Since 17 is two more than 15, the missing number has to be two less than 24 in order to 
keep the balance”. Other students chose to make a similar argument starting with a 
relationship between 17 and 24. Relational thinking can be expressed using a wide range of 
methods and forms, but in all cases these forms and methods draw attention to the 
fundamental ideas of equivalence, and compensation as required by the particular 
operations. These features are equally important to elucidating the structures of the three 
types of mathematical sentences we refer to. 

One of the difficulties encountered in relying on Type I number sentences in a written 
questionnaire is that some students who may be quite capable of using structural thinking 
nevertheless choose to solve Type I sentences by computation. While they may find 
computation attractive and easy, these students need to be distinguished from those who 
are restricted to solving such sentences computationally. This important distinction can, of 
course, be explored by means of an interview; by asking, for example, “Could you have 
solved this number sentence in another way?”.  

Type II: two missing numbers 
But there are other ways of pushing students beyond computation using written 

responses. In studies referred to above, this was achieved through the use of Type II 
number sentences using two unknowns, denoted by Box A and Box B, and employing one 
arithmetical operation at a time. Type II questions are exemplified in parts (a) to (d) in 
Figure 1 below. Using a similar template, other questions were devised involving 
subtraction, multiplication and division. By asking students to construct similar examples, 
some light is shed on at least some of the features they appreciate as changeable and how 
these features are specified mathematically. 

Almost all students were able to make up three replicas of each mathematical sentence 
using specific numbers. In dealing with addition, some students used large numbers such 
as 1,000,000 in Box A and 999,998 in Box B; and others used decimal numbers and 
fractions. There were students who chose quite simple numbers such as 3, 4, and 5 in Box 
A which they associated with 1, 2, and 3 respectively in Box B. Those who used more 
complex numbers in Box A and Box B usually had no difficulty in describing in part (b) 
the relationship between the numbers in Box A and Box B and in successfully answering 
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the subsequent questions. But the same was true for many who had used relatively simple 
numbers in their exemplifications of the mathematical sentence in part (a). 

 
 
Think about the following mathematical sentence: 

18 + c = 20 + c 
Box A  Box B 

 
(a) Can you put numbers in Box A and Box B to make three correct sentences like 
the one above? 
 
(b) When you make a correct sentence, what is the relationship between the 
numbers in Box A and Box B? 
 
(c) If instead of 18 and 20, the first number was 226 and the second number was 
231 what would be the relationship between the numbers in Box A and Box B? 
 
(d) If you put any number in Box A, can you still make a correct sentence? Please 
explain your thinking clearly. 
 

Figure 1. Type II number sentence involving addition. 
 

What actually discriminated between students’ accomplished and not-so-successful 
responses to parts (c) and (d) was how they answered part (b). Almost all students were 
able to identify some pattern between the numbers in Box A and the numbers they had 
used in Box B. But simply seeing a pattern may not be productive in perceiving structure 
as a property to be instantiated elsewhere. 

Some students identified what might be called a non-directed relation between the 
numbers used in Box A and Box B, saying, for example, “There is 2 difference”, or “They 
are 2 apart”, or “There is a distance of 2”. Some qualified this non-directed relation by 
saying, “There is always 2 difference”. Others noticed a directed relation between the 
numbers used but attached no magnitude to the relation, saying, for example, “Box A is 
bigger than Box B”. Others expressed a direction but without referring to Box A or Box B, 
saying, for example, “One number is always higher than the other number by 2”, or “One 
is two more than the other”. These responses illustrate clearly the difference between 
seeing only particular features of a relationship and what we would call structural or fully 
referenced relational thinking. 

In each of these cases, students had noticed some relationship between the numbers in 
Box A and Box B, but their descriptions suggest that they were attending to a specific 
feature of the relationship that could be expressed comprehensively as “The number in Box 
A is two more than the number in Box B”. On the other hand, it may be that when they 
came to articulate what they were aware of, their attention was diverted to a part rather 
than some more comprehensive whole. Many might not have been familiar with the kind 
of relationships which prove to be productive in mathematics. To be productive, 
relationships have to be fully referenced − in this instance, there has to be unambiguous 
reference to the numbers represented by Box A and Box B; and the magnitude and 
direction of the relationship has to be specified − just saying that one is bigger than the 
other, or that there is a difference of two is not enough.  
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Students had their own ways of elaborating comprehensive descriptions; with some 
using logical qualifiers such as “must be” or “has to be” instead of “is”, whereas others 
added a phrase like “in order for the sentence to be correct” or “for both sides to be 
equivalent”. There were others who chose to write the relationship in symbolic form, 
writing an equation involving Box A and Box B, or in some cases just A and B. The 
presence of logical qualifiers and the use of symbolic forms is evidence that students had 
grasped a source of control that comes from fully referenced relational thinking. These 
students appeared to be attending more carefully to what we recognised as the structure of 
the mathematical sentence than those above whose statements pointed to some but not all 
of the features essential for equivalence. 

What we find very illuminating in all responses to the questionnaire in the studies 
reported above is that no student who referred to only partial features of the relationship 
between the numbers in Box A and the numbers in Box B answered part (d) successfully. 
Of course, many attempted to answer this question but their answers were always 
incomplete. Some students answered “No”, but then added that it would be necessary to 
have numbers in Box B that “will allow both sides to balance”. Others thought that it 
would be impossible without using negative numbers. Still others continued to rely on the 
partial features that they had used in answering part (b) in order to answer part (d). 

In summary, these kinds of responses may not be so much incorrect and erroneous as 
incomplete. They fall short in various ways of being productive. They add weight to the 
distinction we want to underline that seeing some relationship or pattern is not the same as 
recognising a mathematical structure. We do need to point out that a mathematically 
complete description of the relationship between the numbers in Box A and the numbers in 
Box B, as required for part (b), did not guarantee a successful answer to part (d). Some 
who had correctly answered part (b) appeared to be worried about the range of variation 
that might be required for part (d) to be correct. Nevertheless, there was a strong 
association between a correct response to part (b) and part (d). Furthermore, when students 
used similar partial or incomplete descriptions to describe the relationship between the 
numbers in Box A and the numbers in Box B in related questions involving subtraction, 
multiplication and division, they were also unable to successfully answer the 
corresponding part (d) question, “If you put any number in Box A, can you still make a 
correct sentence?” 

Type III: symbolic sentences 
Following part (d) students were given a sentence involving literal symbols c and d in 

place of the boxes and where the numbers were slightly different. In the case of addition 
(Figure 1) a symbolic relationship of the form c + 2 = d + 10 was used in a part (e). By 
asking learners to deal with a sentences that is symbolically related to its corresponding 
Type II sentence, some clearer light is shed on the range over which the learner accepts 
that the change can be made. The single-page format in which Type II and Type III 
sentences relating to addition are also shown given in Appendix 1. 

Students were asked, “What can you say about c and d in this mathematical sentence?” 
Once again, none of the students who had given one of the ‘partial descriptions’ of the full 
relationship between the numbers in Box A and the numbers in Box B successfully 
answered this question. Many chose to give a particular set of values, such as c = 10 and d 
= 2 in the case of addition. Those who were able to answer part (e) successfully had all 
given a complete and correct response to part (b) and part (c), and most had given a correct 
and complete response to part (d). Among successful responses, there was, moreover, a 
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high level of consistency between the language and terminology used to explain students’ 
answers to part, (d) and (e). For example, where students had answered (d) using a 
symbolic relationship they almost always used a symbolic expression to describe the 
relationship between c and d; and where they had used written descriptions in answering 
part (d) and part (e) they used similar words and phrases in both expressions. One student 
commented that the c and d were “just like Box A and Box B”. This suggests an aspect of 
structural understanding that could be explored more deeply in interviewing students who 
gave correct answers to parts (d) and (e). Referring to the Type II number sentence and its 
corresponding Type III symbolic expression involving c and d, students could be invited to 
comment on the statement: “These two sentences look different. Are they so different? Can 
you comment from a mathematical point of view on any similarities you notice about 
them?” 

How well did the design work? 
The use of Type I number sentences did give many students an opportunity to 

demonstrate their capacity to use relational thinking. Those who did confidently on Type I 
sentences continued to exhibit relational thinking, usually very competently, on subsequent 
Type II and type III sentences. There were other students who used a mix of computational 
and relational approaches on Type I sentences. When these students were required to use 
relational methods on Type II and Type III sentences, the extent of their competence in 
relational thinking could be more clearly assessed. Some of these students appeared to be 
students who found computing the result of a Type I sentences easy to do, but who could 
have just as easily have used relational thinking, but chose not to, or simply thought that 
computation was the easiest way to go. 

Those most strongly affected and clearly identified by the design of the questionnaire 
were those who consistently used computational approaches on Type I. In China, for 
example, there were more students than in the other countries who solved Type I sentences 
by computation and yet were quite capable of working relationally on Type II and Type III 
questions. The use of Type II questions clearly identified those who had used computation 
on Type I sentence by choice – the choosers – in contrast to those who were reliant on 
computation to solve Type I sentences and were not able to access relational methods.  

The first group was able to “shift” as required into relational thinking and could 
demonstrate various levels of competence on Type II and Type III sentences. The second 
group was able attempt Type II questions over the four operations, but typically failed to 
identify fully the mathematical relationships between the numbers in Box A and Box B. 
They certainly found Type III sentences involving symbolic terms difficult to answer 
except in terms of giving a specific pair of values for c and d. 

There were opportunities to interview several students who had shown clear relational 
thinking on Type II questions but who had answered Type I questions typically by 
computation. In interview, these students were first given an opportunity to review shown 
their successful handling of Type II questions for one of the operations. Then they were 
asked to look at their solutions to the corresponding operation where they had used only 
computation. The interviewer started by saying: “These are answers you have calculated 
correctly, but is there another way you might have thought about these questions?” 

In most cases, it came as a surprise to these students that they could actually solve 
Type I questions relationally. Some saw these possibilities intuitively having considered 
their solutions to Type II questions. However, others had to “coach themselves” to make 
Type I questions be seen as structurally similar to Type II questions. For example, when 
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looking at c + 17 = 15 + 24, one student covered up c and 15 with his fingers leaving only 
17 and 24 either side of the equal sign. And then said, “There is a 7 more on this side 
(pointing to the 24) and then lifted his fingers to direct attention to c and 15, then arguing 
that the number represented by c had to be seven more then 15. Likewise, these students 
could look at the 23 and the 26 in first Type I addition problem and see that a relationship 
of “three more” has to be compensated by “taking three off” 15 to give a value of 12 for 
the missing number. This pattern of covering up the number represented by the box in a 
Type I question and its corresponding number placed on the other side of the equal sign 
was a powerful way of identifying how the other two given numbers were related 
according to the operation used.  

Learning to attend to a given pair of numbers in terms of the operation used, blocking 
out the other two numbers including the missing number shown by c helped some students 
to see a relationship that was not evident to them before. By working through several 
examples in this way, one can work with particular relationships. Type II and Type III 
questions were needed to establish if students are able to generalise these relationships. 
Other students, regrettably, found applying relational strategies to Type I sentences quite 
challenging. These would appear to need more explicit teaching, but this interview 
procedure did show that seeing a relationship not-seen-before was achieved by deliberately 
changing the focus and structure of attention of students who were given a suitable prompt 
from their own successful relational strategies on Type II sentences. This interview 
strategy was not extended to helping students deal with Type III sentences where many had 
difficulty giving a generalised answer, but it could be tried. 
 

*Author’s note: This paper is derived from a longer paper by John Mason, Max 
Stephens and Anne Watson, published in the Mathematics Education Research Journal 
Volume 21, No.2, July 2009, entitled, Appreciating Mathematical Structure for All, (MERJ, 
pp. 10-32).  
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Appendix 1 
 

NAME       YEAR LEVEL 
 

Number Sentences and Relationships Questionnaire 
 
 
1. For each of the following number sentences, write a number in the box 

to make a true statement. Explain your working briefly. 
 
 

23 + 15 = 26 +      
 
 
 
 
 
 

73 + 49 =         + 47 
 
 
 
 
 
 

43 +         = 48 + 76 
 
 
 
 
 
 
           + 17 = 15 + 24 
 
 
 
 
 
 
 
 
© The University of Melbourne 2008 
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2. Can you think about the following mathematical sentence: 
 
                     

18 +           = 20 +  
       Box A    Box B 
 

(a)  In each of the sentences below, can you put numbers in Box A and      
Box B to make each sentence correct? 

 
 

18 +  = 20 +  
       Box A    Box B 

 
18 +  = 20 +  
       Box A    Box B 
 
 
 

18 +  = 20 +  
       Box A    Box B 

 

(b)  When you make a correct sentence, what is the relationship between 
the numbers in Box A and Box B? 

 
 
 
(c) If instead of 18 and 20, the first number was 226 and the second 

number was 231 what would be the relationship between the numbers 
in Box A and Box B? 

 
 
 
(d) If you put any number in Box A, can you still make a correct sentence? 

Please explain your thinking clearly. 
 
 
 
 
(e) What can you say about c and d in this mathematical sentence? 

c + 2 = d + 10  
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